7 research outputs found

    Forest carbon stocks and fluxes in physiographic zones of India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reducing carbon Emissions from Deforestation and Degradation (REDD+) is of central importance to combat climate change. Foremost among the challenges is quantifying nation's carbon emissions from deforestation and degradation, which requires information on forest carbon storage. Here we estimated carbon storage in India's forest biomass for the years 2003, 2005 and 2007 and the net flux caused by deforestation and degradation, between two assessment periods i.e., Assessment Period first (ASP I), 2003-2005 and Assessment Period second (ASP II), 2005-2007.</p> <p>Results</p> <p>The total estimated carbon stock in India's forest biomass varied from 3325 to 3161 Mt during the years 2003 to 2007 respectively. There was a net flux of 372 Mt of CO<sub>2 </sub>in ASP I and 288 Mt of CO<sub>2 </sub>in ASP II, with an annual emission of 186 and 114 Mt of CO<sub>2 </sub>respectively. The carbon stock in India's forest biomass decreased continuously from 2003 onwards, despite slight increase in forest cover. The rate of carbon loss from the forest biomass in ASP II has dropped by 38.27% compared to ASP I.</p> <p>Conclusion</p> <p>With the Copenhagen Accord, India along with other BASIC countries China, Brazil and South Africa is voluntarily going to cut emissions. India will voluntary reduce the emission intensity of its GDP by 20-25% by 2020 in comparison to 2005 level, activities like REDD+ can provide a relatively cost-effective way of offsetting emissions, either by increasing the removals of greenhouse gases from the atmosphere by afforestation programmes, managing forests, or by reducing emissions through deforestation and degradation.</p

    Diversity pattern of vegetation in and around proposed Kotlibhel hydroelectric project along the Alaknanda River in Garhwal Himalaya (India)

    No full text
    The study made an assessment of the floral status of the project site of Kotlibhel hydrolectric project (Stage 1B) at Alaknanda valley in the Ganga river system (India). Study area included two broad zones: Influence (IZ) and Submergence zone (SZ). Influence zone showed higher species richness in all vegetation strata. In the upper layer, there were 26 tree species, middle layer consisted of 32 shrub species and ground layer (understory) contained 41 species. Maximum density in the tree layer (36.4 plants/ha) was found for Haldinia cordifolia in the Influence zone. On the other hand, shrub and herb species showed highest density in the Submergence zone. Highest density of shrubs species was recorded for Ficus hederacea (844.0 plants/ha), while highest density of herbs for Desmodium triflorum (5540.1 plants/ha). Significant differences in Shannon diversity were found between Influence and Submergence zones for shrub and herb species (P<0.001), but not for trees. Simpson diversity was not significantly different for tree, shrub and herb species in both zones. Differences in Margalef species richness were found (P<0.001) for all vegetation layers in both zones. Distribution pattern of the species showed contagious patterns for both Submergence and Influence zone. Maximum Shannon diversity (3.561) was recorded in the Influence zone for herb species, followed by shrubs species (3.184) and tree species (2.593). Submergence zone showed lower Shannon diversity than the Influence zone, where a higher Shannon diversity (3.480) was recorded for herb species. Pinus roxburghii showed the highest IVI in the Influence zone (71.88) and Mangifera indica in Submergence zone (58.77)
    corecore